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Abstract

Text-to-3D generation by distilling pretrained large-
scale text-to-image diffusion models has shown great
promise but still suffers from inconsistent 3D geometric
structures (Janus problems) and severe artifacts. The afore-
mentioned problems mainly stem from 2D diffusion mod-
els lacking 3D awareness during the lifting. In this work,
we present GeoDream, a novel method that incorporates
explicit generalized 3D priors with 2D diffusion priors to
enhance the capability of obtaining unambiguous 3D con-
sistent geometric structures without sacrificing diversity or
fidelity. Specifically, we first utilize a multi-view diffusion
model to generate posed images and then construct cost vol-
ume from the predicted image, which serves as native 3D
geometric priors, ensuring spatial consistency in 3D space.
Subsequently, we further propose to harness 3D geometric
priors to unlock the great potential of 3D awareness in 2D
diffusion priors via a disentangled design. Notably, disen-
tangling 2D and 3D priors allows us to refine 3D geomet-
ric priors further. We justify that the refined 3D geometric
priors aid in the 3D-aware capability of 2D diffusion pri-
ors, which in turn provides superior guidance for the re-
finement of 3D geometric priors. Our numerical and visual
comparisons demonstrate that GeoDream generates more
3D consistent textured meshes with high-resolution realis-
tic renderings (i.e., 1024× 1024) and adheres more closely
to semantic coherence. Our code and evaluation of 3D met-
ric are available at: GeoDream

1. Introduction

Diffusion models [39–41] have significantly advanced text-
to-image synthesis. This remarkable achievement has been
reached by training scalable generative models on a vast
corpus of paired text-image data. Inspired by their success,
it is appealing to lift this success from 2D to 3D because
this achievement holds significant potential impacts on the

*Equal contribution.
Correspondence to {brma@baai.ac.cn} and {wangxinlong@baai.ac.cn.}

modern game and media industry. Template-based genera-
tors [3] and 3D native generative models [15, 19, 32, 34, 52]
provide a natural and direct approach to the lift. How-
ever, due to the massive and diverse 3D data required to
train such generalized models, these methods are usually
limited to specific categories with relatively simple topol-
ogy and texture. Recently, the Score Distillation Sampling
(SDS) [35] and Variational Score Distillation (VSD) [53]
have been introduced to optimize 3D representations such
that images rendered from any viewpoints maintain a high
likelihood, as evaluated by diffusion model conditioned on
a given text. This is an exciting direction because it allows
for generating 3D assets from any given text prompts, cir-
cumventing the need for any 3D data. Despite these meth-
ods yielding satisfactory results on a wide range of geo-
metrically symmetrical 3D shapes, empirical observations
indicate that SDS and VSD losses still suffer from incon-
sistent 3D geometric structures (Janus problems) [54] and
severe artifacts [45, 53] with asymmetric geometry. This is
primarily due to the lack of 3D awareness in 2D diffusion
models, which inherently makes the lifting from 2D obser-
vations into 3D ambiguous.

As a remedy, learning 3D priors from 3D datasets
seems theoretically reasonable and correct. However, 3D
data remains expensive and sparse compared to the plenti-
fully available images. Therefore, the most promising av-
enue [37, 45, 47] presently is to equip 2D diffusion pri-
ors with 3D priors learned from relatively limited 3D data,
aiming to achieve the best of both worlds. Recently, with
the release of large-scale 3D datasets, Objaverse [6] and
Objaverse-XL [5], a few works [20, 24, 45, 58] have at-
tempted to finetune pre-trained 2D diffusion models using
multi-view images rendered from 3D dataset. This involves
obtaining multi-view images from the fine-tuned diffusion
model conditioned on camera parameters and utilizing the
clues of predicted multi-view consistency to infer 3D in-
formation. Nevertheless, these methods rely heavily on
the consistency of content predicted across different source
views. Despite their efforts to employ 3D self-attention to
exchange features between different views [45], to corre-
late multi-view features using 3D-aware attention [58], or to
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Textured Meshes

An astronaut riding a horse

Wes Anderson style Red Panda, reading a book, super cute, highly detailed and colored

A colorful toucan with a large beak

A flamingo standing on one leg in shallow water

A high quality photo of a dragon

A delicious creamy lemon cake

A bald eagle carved out of wood

Rendered Images

A DSLR photo of a delicious chocolate brownie dessert with ice cream on the side

Figure 1. GeoDream alleviates the Janus problems by incorporating explicit 3D priors with 2D diffusion priors. GeoDream generates con-
sistent multi-view rendered images and rich details textured meshes. We remove rendering background to achieve a clearer visualization.
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transform RGB predictions into coarser Canonical Coordi-
nates Map predictions [20] to mitigate the negative impact
of inconsistencies. Such inconsistencies between the pre-
dicted multiple views become particularly noticeable, es-
pecially in imaginative and uncommon cases beyond the
training data distribution, resulting in over-smoothing and
the loss of semantic geometries in the generated 3D assets.

To resolve this issue, we introduce GeoDream, a novel
method that incorporates explicit generalized 3D priors with
2D diffusion priors to enhance the capability of obtain-
ing unambiguous 3D consistent geometric structures, while
maintaining diversity and high fidelity. Our contributions
are listed below. i) In stark contrast to the methods men-
tioned above that hinge heavily upon the consistency be-
tween multi-view priors, we propose to obtain 3D native
priors within the 3D world space, which are well-suited to
handle the inherent lack of perfect consistency within the
multi-view predicted priors, and naturally free from incon-
sistencies caused by camera viewpoint transition. ii) We
justify that disentangling 3D and 2D priors is a potentially
exciting direction for maintaining both the generalization
of 2D diffusion priors and the consistency of 3D priors. In
other words, providing hints through 3D priors to unlock
the great potential of 3D awareness in 2D diffusion priors,
without the need for invasive finetune 2D diffusion models.

Specifically, we start by reconstructing cost volume as
native 3D priors by aggregating the predicted multi-view
2D images into 3D space. Such aggregation operations have
been widely used in MVS-based techniques [23, 26, 57, 59],
which are known to be robust and generalized to provide
valuable cues for geometric reasoning. We find that such
operations are well-suited for handling imperfect and in-
consistent multi-view predictions. The reason is that they
involve multi-view information aggregation, which helps
filter out inconsistent content to some extent, rather than
dealing with each view individually. Foremost, we conduct
extensive experiments to demonstrate that our proposed 3D
priors adapt to multiple views predicted by various off-the-
shelf multi-view diffusion models, such as Zero123 [24],
MVDream [45] and Zero123++ [44]. Moreover, we intro-
duce a critical viewpoint sampling strategy to promote the
stability of the 3D priors.

We further propose incorporating 3D priors with 2D dif-
fusion priors in a disentangled solution. Existing multi-view
diffusion priors are equipped with 2D diffusion priors in
a coupled way, including generating multiple views as su-
pervision [24, 44] or distilling the probability density as a
loss [20, 37, 45, 47] to compute gradients for optimizing 3D
representations. Instead, we justify that leveraging the geo-
metric clues provided by 3D priors can effectively unleash
the great potential 3D awareness capability inherent in 2D
diffusion priors, referred to as “disentangled design”. Very
recent works have started to explore how to evoke 3D-aware

Table 1. Comparison of design space.
Method Prolific [53] MVDream [45]GSGEN [4] Ours

Repr. NeRF+DMTet NeRF Gaussian NeuS+DMTet
Resolution 512 512 512 1024
3D guidance - Multi-Views Point-E Cost volume
3D&2D - Entangled Entangled Disentangled
3D priors Fixed Fixed Fixed Optimizable

ability in 2D diffusion by altering score functions [13] or
negative text prompts [1]. These efforts have made surpris-
ing progress, yet the performance remains unstable regard-
ing 3D consistency. Our insight is that going through geo-
metric priors to unlock the great potential of 3D awareness
in 2D diffusion is a promising direction that is both general
and stable. Moreover, we rely solely on the awakened 3D-
aware capability of 2D priors to guide the optimization of
Neural Implicit Surfaces (NeuS) [50] without the supervi-
sion of 3D priors, thereby avoiding compromising the inher-
ent advantages of 2D priors in terms of generalization and
creativity. We show that 3D priors can be further refined
to boost rendering quality and geometric accuracy. The 2D
diffusion priors benefit from gradually evolved 3D priors,
which in turn provide superior guidance for unleashing the
2D priors. Finally, we use DMTet [43] to extract textured
mesh from optimized NeuS for mesh fine-tuning. Unlike
previous work [35, 53] attempt to increase the rendering res-
olution, which typically suffer from over-saturation issues,
we successfully increase the rendering resolution from 512
to 1024. We hypothesize that the improved results are aided
and abetted by 3D priors that provide more plausible geom-
etry and realistic texture, making the optimization easier,
because the rendered image is closer to diffused distribu-
tions. To comprehensively evaluate semantic coherence, to
our knowledge, we are the first to propose Uni3Dscore met-
ric, lifting the measurement from 2D to 3D.

As summarized in Tab.1, we compared the latest
methods[4, 45, 53] in design space, including 3D represen-
tation, rendering resolution, forms of 3D guidance, the dis-
entangling of 3D and 2D priors and the optimizability of
3D priors. As shown in Fig.1, GeoDream can yield 1024 ×
1024 high-resolution rendered images and high-fidelity tex-
tured meshes while greatly alleviating the notorious Janus
problems. In Sec.4.1, we conduct comprehensive evalua-
tions that demonstrate the superiority of the 3D assets gen-
erated by GeoDream in terms of plausible geometry and
delicate rendering details in visual appearance.

2. Related Work

3D Generation Guided by 2D Priors. Deep generative
models have driven the field of 3D generation. Some efforts
utilize Variational Auto Encoders (VAEs) [17] for texture
generation [11, 12], while Generative Adversarial (GAN)
Models [8] investigate 3D-aware GAN training [2, 7]. Thus
far, diffusion models have exhibited relatively better gen-
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eralizability and training stability for diverse object gener-
ation compared to GANs and VAEs, and thus have gradu-
ally become recent focal points in 3D generation. Specif-
ically, recent endeavors attempt to leverage the potent 2D
diffusion priors to aid 3D generation by coupling it with a
3D representation, such as NeRF [31], DMTNet [31], or
NeuS [50], among others, bypasses the necessity for ex-
tensive text-3D datasets for training 3D generative models.
Such methods involve various techniques, including score
distillation sampling schedules like SDS [49], SJC [35], and
VSD [53] losses, which optimize the 3D representation by
enhancing high likelihood evaluated by the 2D diffusion
models. A coarse-to-fine training strategy [3] strengthens
texture representation, decoupling geometric and texture as-
pects of 3D representation for finer optimization [22], im-
proving 3D representation [4, 48]. Although these methods
demonstrate the ability to generate photo-realistic and di-
verse 3D assets with user-provided textual prompts, they
are prone to the notorious 3D inconsistency issues (Janus
problems) during the lifting process due to their reliance on
2D diffusion models for training, which lack 3D knowledge.
Despite some current methods attempting to address 3D in-
consistency by altering score functions [13] or negative text
prompts [1], performance remains instability in terms of 3D
consistency. In this work, we aim to explore the distinctive
advantages of incorporating explicit 3D priors with 2D pri-
ors, enabling the generation of highly detailed 3D objects
while remarkably mitigating 3D inconsistency issues.

3D Generation Guided by 3D Priors. Learning 3D pri-
ors from 3D datasets seems theoretically reasonable and
correct for enhancing the coherency of 3D generation [22–
24, 30, 36, 55]. Therefore, various 3D latent diffusion
models trained on 3D data have been recently introduced,
including those using Tri-plane [46] or feature grid [16,
25, 51] encoding 3D representations into the latent space.
Additionally, OpenAI has explored models aiming to di-
rectly generate 3D formats using several million internal
3D shapes, such as point clouds [34] or neural radiance
fields [15]. However, their generalizability to the scope of
their 2D counterparts remains unverified, due to the rela-
tive sparsity of 3D data compared to the abundance of avail-
able 2D images. Consequently, the most promising avenue
currently is to equip 2D diffusion priors with 3D priors
learned from relatively limited 3D data, intending to achieve
the best of both worlds. Recently, with the release of a
large-scale 3D dataset called Objaverse [6] and Objaverse-
XL [5], some work [20, 23, 24, 45, 56, 58] has attempted
to fine-tune pre-trained 2D diffusion models using multi-
view images rendered from 3D data. This aims to gener-
ate multi-view images from the fine-tuned diffusion model
conditioned on camera parameters and utilize the clues of
predicted multi-view consistency to assist in inferring 3D
information. Nevertheless, these methods heavily depend
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Figure 2. The overview of GeoDream. (a) 3D priors training. (b)
Incorporating 3D priors with 2D diffusion priors.

on the absolute consistency of content predicted across dif-
ferent views. Nonetheless, their efforts to utilize 3D self-
attention [45, 56] for feature exchange between different
views, to correlate multi-view features using 3D-aware at-
tention [58], or to transform RGB predictions into coarser
Canonical Coordinates Map predictions [20] for mitigate
the negative impact of inconsistencies. The performance
of such methods frequently exacerbates inconsistencies and
unrealistic rendering quality in uncommon cases, due to the
absence of explicit constraints between different predicted
viewpoints within 3D space. In this work, we incorpo-
rate explicit generalized 3D priors into 2D diffusion priors.
These explicit 3D priors fundamentally ensure consistency
in 3D space and avoid the independence of multi-view pri-
ors across source views.

3. Method

We focus on generating 3D content with consistently accu-
rate geometry and delicate visual detail, by equipping 2D
diffusion priors with the capability to produce 3D consis-
tent geometry while retaining their generalizability. The
overview of GeoDream is shown in Fig.2. GeoDream con-
sists of the following two stages. i) During 3D priors train-
ing, we build upon the One-2-3-45 [23], which encodes ge-
ometry into cost volume V and geometry MLP decoder fg .
In addition, the appearance of the object is modeled to cost
volume V and texture MLP decoder ft. We refer to the
trained geometric decoder fg and appearance decoder ft
with cost volume V as native 3D geometric priors and ap-
pearance priors, as shown in Fig.2 (a). Detials in Sec.3.1.
ii) During priors refinement, we show that geometric pri-
ors can be further fine-tuned to boost rendering quality and
geometric accuracy by combining a 2D diffusion model, as
shown in Fig.2 (b). Detials in Sec.3.2.

3.1. Generalizable 3D Priors Training

We start by reconstructing cost volume V as native 3D pri-
ors by aggregating the 2D image features into 3D space,
which provides valuable cues for geometric reasoning in the
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priors refinement stage.
Cost Volume Construction. Following MVS-based meth-
ods [23, 26, 57, 59], given multi-view images I =
{(Ii)N−1

i=0 }, we extract 2D feature maps F = {(Fi)
N−1
i=0 }

using a 2D feature network f2D. Volume reconstruction
model takes posed 2D feature maps F as input and out-
puts cost volume V with per-voxel neural features in voxels.
Specifically, for each voxel centered at 3D location h, per-
voxel neural feature is computed by projecting each location
h to N image feature planes and then fetching the variance
of the features at the the location of the projection. We use
Var to denote the variance operation and P to denote the

projection procedure. We then use a sparse 3D CNN f3D
to process the variance features per voxel to regress the cost
volume, as formulated by,

V = f3D( Var{P (Fi, h)}N−1
i=0 ), (1)

where the variance operation is invariant to the number N
of input images. We find that such an operation is well-
suited for handling imperfect and inconsistent multi-view
predictions, due to involving information aggregation rather
than dealing with each view individually.
Geometry and Texture Decoder. The cost volume V is di-
rectly decoded into signed distance function values (SDF)
and color information using the corresponding geometry
MLP decoder fg and texture MLP decoder ft. For any ar-
bitrary query point x ∈ R3, we get the SDF s and color c
as

s(x) = fg(E(x), V (x)), (2)

c(x) = ft({P (Fi, x)}N−1
i=0 , V (x), {∆di}N−1

i=0 ), (3)

where E denotes position encoding, V (p) denotes tri-
linearly interpolated feature from cost volume at query
point x, ∆di = d− di is the viewing direction of the query
ray relative to the viewing direction of the ith multi-view
image.

The final rendered image I ′ is achieved via SDF-based
differentiable volume rendering R. In this work, we get
the pre-trained parameters of the fg , ft, and f3D networks
from the One-2-3-45 [23], which is trained on ground truth
images I rendered from the Objaverse dataset with a loss

Lrgb = ||I − I ′||2, (4)

where I ′ = R({s(xj), c(xj))}M−1
j=0 ), M denotes sampling

M query points along the ray of viewing direction.

3.2. Priors Refinement

We present how to further finetune the geometric priors ob-
tained from 3D priors training stage, i.e., optimizable cost
volume V and the fixed pre-trained geometric decoder fg ,
using the 2D diffusion priors, as shown in Fig.2 (b). Dur-
ing priors refinement stage, we replace the N ground truth

rendered images with multi-view diffusion model predic-
tions. In contrast to One-2-3-45, GeoDream is not limited
to the Zero123 [24] predictions. We conduct extensive ex-
periments with various multi-view diffusion models, such
as MVDream [45] and Zero123++ [44]. We also intro-
duce a critical viewpoint sampling strategy to ensure Geo-
Dream robustly adapts to various multi-view diffusion mod-
els, rather than being limited to just one. Overall, we justify
that by decoupling 3D and 2D diffusion priors, GeoDream
unlocks the immense potential of 3D awareness in the 2D
diffusion model, avoiding the tendency to produce canoni-
cal views, resulting in 3D assets featuring multiple faces and
collapsed geometry. Thanks to the decoupling, GeoDream
maintains the generalization and imaginativeness of 2D dif-
fusion priors, while also exploring the significant role that
geometric priors play in improving appearance modeling.
Multi-View Images Generation. The rapid advancement
of 3D generation has provided a wide range of meth-
ods available for generating multi-view images, such as
Zero123[24], MVDream[45], and Zero123++ [44]. Given
a set of predefined camera poses {(Ri, Ti)

N−1
i=0 } and a user-

provided condition c, we utilize a fixed multi-view diffusion
fmv to predict posed images Ip = {(Ipi )

N−1
i=0 } and extract

2D feature maps Fp = {(F p
i )

N−1
i=0 },

F p
i = f2D(fmv(c,Ri, Ti)), (5)

where R ∈ R3×3, T ∈ R3×3 respectively denote relative
camera rotation and translation of the default viewpoint.
3D Geometric Priors. By replacing Fi in Eq.1 into F p

i , we
obtain the value of SDF at an arbitrary query point x defined
in Eq.2,

Vp = f3D( Var{P (F p
i , h)}

N−1
i=0 ), (6)

sp(x) = fg(E(x), Vp(x)), (7)

where sp(x) is treated as a geometric prior since it encodes
the hidden geometric clues in the predicted multiple views.
Texture Decoder. We propose to drop the pre-trained tex-
ture priors ft defined in Eq.3 because we empirically find
that texture priors tend to generate 3D assets with lighting
and texture styles similar to the rendered dataset. We choose
Instant NGP [33] for efficient high-resolution texture en-
coding. Specifically, for any arbitrary query point x ∈ R3,
a learnable hash encoding hΩ is decoded into a color c using
initialized texture decoder f ′

t , as formulated by,

cp(x) = f ′
t(hΩ(x), x), (8)

where hΩ(x) denotes the looked-up feature vector from hΩ

at query point x.
Texture and Geometry Refinement. To incorporate 3D
geometric priors with 2D diffusion priors, we minimize the
VSD loss introduced in ProlificDreamer [53] to optimize
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the parameters of θ1 in cost volume V , θ2 in hash encod-
ing hΩ and θ3 in texture decoder f ′

t . At each iteration, we
sample a camera pose o from a pre-defined distribution. We
render 2D image x̂ at pose o by combining Eq.7 and Eq.8
via differential rendering R. Our objective function during
priors refinement is to minimize the VSD loss LV SD, the
corresponding gradient∇θ1,θ2,θ3LV SD is

Et,ϵ,o[w(t)(ϵpretrain(x̂t, t, c)−ϵl(x̂t, t, c, o))
∂x̂

∂(θ1, θ2, θ3)
],

(9)
where x̂t denotes a noisy rendered image in timestep t, w(t)
denotes a weighting function, ϵpretrain is a 2D pretrained
diffusion model and ϵl is a trainable LoRA [14] diffusion
model with parameters of l. We propose to fix the geometry
decoder fg conjointly with a learning rate decay strategy for
the cost volume, aiming to maintain geometric priori cues
as well as tuning to achieve better details in the early stage
of optimization. More details on viewpoint sampling and
learning rate decay strategy are provided in Sec.4.2.
Mesh Fine-tuning. For high-resolution rendering, we use
DMTet [43] to extract textured 3D mesh representation
from optimized NeuS [50]. By minimizing the loss in Eq.9,
we follow ProlificDreamer [53] first to optimize the geome-
try using the normal map and then optimize the texture. We
empirically find that we can increase the rendering resolu-
tion from 512 to 1024. But unlike previous work [35, 53],
attempting to increase the rendering resolution suffers from
over-saturation issues. We successfully increase the render-
ing resolution from 512 to 1024. We hypothesize that well-
optimized results are aided and abetted by 3D priors that
provide more plausible geometry and realistic texture, mak-
ing the optimization easier, because the rendered image x̂ is
closer to diffused distributions at each iteration.

4. Experiment
4.1. Results of GeoDream

Baselines. We report our performance with the latest 3D
generation methods, including DreamFusion [35], Prolific-
Dreamer [53], MVDream [45], GSGEN [4], Fantasia3D [3]
and Wonder3D [27]. Specifically, DreamFusion [35], Fan-
tasia3D [3] and ProlificDreamer [53] adopt a similar ap-
proach to optimize 3D representation through the score
function of a 2D diffusion model, without intervening in
3D priors. We compare our results with these three meth-
ods, highlighting the distinct advantages of inferring 3D-
consistent geometry and reducing artifacts by incorporating
explicit 3D priors. Meanwhile, MVDream [45] and Won-
der3D [27] are very recent proposals to use multi-view con-
sistency priors, which derived from finetuned multi-view
diffusion models trained on synthetic multi-view render-
ing image data. GSGEN [4], on the other hand, addresses
3D inconsistency by initializing geometry with Point-E [34]

generated shapes. By comparing these three methods, we
demonstrate that our introduced 3D priors offer greater gen-
erality in challenging and uncommon cases and effectively
prevent the generation of 3D assets with lighting and texture
styles similar to the synthetic rendered dataset. For Dream-
Fusion [35], ProlificDreamer [53] and Fantasia3D [3], we
utilize their implementations in the ThreeStudio [9] library
for comparison. For MVDream [45], GSGEN [4] and Won-
der3D [27], we use their official implementation.
Experiment Setup. We collected 35 prompts from vari-
ous sources, including prompts from previous work [27, 45]
and real user inputs in the wild. To comprehensively as-
sess 3D consistency and semantic coherence, we intention-
ally selected more prompts indicating asymmetric geomet-
ric structures (80% of the collected prompts) and fewer
prompts indicating symmetric geometric structures (20%).
For a fair comparison, we render 3D assets generated by
our method and baselines by circling around the object at a
default elevation and camera distance [9], resulting in 120
images. We then evaluate the gap between the rendered
images and reference images generated by Stable Diffu-
sion [40] based on the collected prompts. We sample 10k
points on the generated meshes to calculate 3D metric. To
demonstrate that our method is trivially adaptable to vari-
ous multi-view diffusion models, we randomly use either
Zero123 [24] or MVDream [45] and Zero123++ [44] for
subsequent experiments. For the effect of different diffu-
sions on the results, please refer to supplementary for detail.
2D Metrics. FIDCLIP [18] for image fidelity measurement,
which is calculated by the disparity in distribution between
the rendered image and reference image features, both en-
coded by CLIP ViT-B-32 [38]. CLIP R-score for semantic
coherence measurement is calculated by the probability of
rendered images retrieving the correct caption among col-
lected prompts. We average the metric over 120 rendered
images for the quantitative comparison.
3D Metric. These metrics mentioned above are for measur-
ing 2D images. Limited by rendering angles and geometric
self-occlusion, 2D metrics often struggle to assess 3D ob-
jects in 360 degrees fully. To the best of our knowledge,
no metrics have yet been introduced in text-to-3D tasks for
evaluating the semantic consistency of 3D assets. There-
fore, we propose using Uni3D [60], the largest 3D presen-
tation model with one billion parameters under text-image-
pointcloud alignment learning objective, to lift semantic co-
herence measurement from 2D to 3D. We adopt a similar
strategy to the CLIP R-score, except that we replace the im-
age and text encoders in the CLIP with the point cloud and
text encoders from the Uni3D, referred to as “Uni3Dscore”.
Subjective Metric. 3D reconstruction tasks are typically
evaluated of the error reconstructed shape compared to the
ground truth [29]. However, these metrics are difficult to
apply to text-to-3D tasks, as there is no ground truth. We

6



DreamFusion MVDreamProlificDreamer Ours (Rendered images)GSGEN

A kangaroo wearing boxing gloves

Samurai koala bear

A brightly colored mushroom growing on a log

Corgi riding a rocket

Ours (Meshes)

Figure 3. Qualitative comparison with baselines. Back views are highlighted with red rectangles for distinct observation of multiple faces.
Table 2. Quantitative comparison with baselines.

Model FIDCLIP ↓ CLIP R-score↑ Uni3Dscore ↑ Cons. Rate↑
B/16 L/14

DreaFusion [35] 59.6 0.844 0.870 0.514 0.429
ProlificDreamer [53] 48.8 0.866 0.892 0.629 0.257
MVDream [45] 50.6 0.852 0.886 0.771 0.829
Ours 47.9 0.935 0.962 0.800 0.914

further manually check the number of examples with 3D or
semantic inconsistency problems, and then report the rate of
success as an auxiliary metric, referred to as “Cons. Rate”.
Quantitative Comparison. In Tab.2, we conduct a quanti-
tative comparison over generation quality, text-image con-
sistency and 3D consistency. Overall, the results indi-
cate that our method significantly outperforms the base-
lines across all metrics, demonstrating that we achieve high-
fidelity, text-image and text-3D consistency in the generated
quality while ensuring 3D spatial consistency.
Qualitative Comparison. Fig.3 compares our method with
the baselines. We present four visual examples: the first
three rows depict non-symmetric geometries, while the last
row is for symmetric geometry. Notably, we display the
front, side, and back views, where the back views are high-
lighted with red rectangles to enhance the observation of
potential multiple faces issues. We highlight our improve-
ments in visual comparison in Fig.3. Dreamfusion and Pro-
lificDreamer produce high-quality frontal views but fail to
form a plausible 3D object. In particular, ProlificDreamer
delivers photorealistic 3D assets with semantic coherence,
where every view resembles canonical views, i.e., the back

views that are shown in red rectangles, are mistakenly opti-
mized as front views, resulting in Janus problems. GSGEN
mitigates some of the 3D inconsistencies by introducing 3D
priors from the pre-trained Point-E. However, the fidelity of
the textures it generates is still insufficient for complete sat-
isfaction. Compared to the three methods mentioned above,
MVDream stands out as the most effective solution for ad-
dressing multi-view inconsistency issues. This is achieved
by fine-tuning pre-trained 2D diffusion models using multi-
view images rendered from 3D data. Nevertheless, due to
the rendering quality and sparsity of 3D training data, the
generated results often exhibit cartoon-style textures and se-
mantically lost geometries, particularly when dealing with
uncommon and challenging given prompts. For example,
it struggles to generate a rocket as required in the second
case, a samurai style as required in the third case, and a log
as required in the fourth case. By incorporating explicit 3D
priors with a 2D diffusion model that is capable of imagina-
tion diversity, GeoDream significantly alleviates the mul-
tifaceted nature of generated 3D assets, in terms of both
meshes and rendered images exhibiting impressive photo-
realistic textural details, while maintaining semantic faith-
fulness, as shown in Fig.1 and Fig.3. More analysis and
comparisons with other baselines can be found in the sup-
plementary.
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(b) Cost volume fixed (c) Learning rate decay (d) SDS (e) Ours

(g) Adding texture priors(f) w/o 3D priors

(a) Initial cost volume

(h) NeuS-based result (i) 512 rendering (j) Ours

Figure 4. Ablation study of proposed improvements for text-to-3D generation.
4.2. Ablation Study

We then conduct ablation studies to justify the effectiveness
of each design in GeoDream. We activate all the modules
and training strategies mentioned in the Sec.3 during abla-
tion studies, except for the modified part described in each
ablation experiment below.

The Effect of 3D Priors. We first visualize the initial cost
volume obtained through the volume construction model,
as shown in Fig.4 (a). Fig. 4 (a) combined with Fig.4 (e)
demonstrate that relying solely on rough geometric cues can
significantly activate potential of 3D awareness in 2D diffu-
sion, alleviating the character’s tendency to exhibit multi-
faceted issues. In contrast to fixed priors in Fig.4 (b), we
propose using optimizable priors that gradually evolve ac-
cording to the optimization state, thus producing progres-
sively refined results, as shown in Fig.4 (e) and Fig.4 (j). To
further assess its impact, we also attempt to deactivate the
cost volume, i.e., randomly initializing the 3D prior. The
3D inconsistency issue also arises, as shown in Fig.4 (f).
To assess the impact of the learning rate decay schedule, an
ablation study is conducted, where the learning rate of the
cost volume is set to a suitable constant value. The gener-
ated 3D assets still suffer severe degeneration, resulting in
a completely collapsed geometry in Fig.4 (c). The reason is
that, during the early stage of optimization, there may be a
lot of ambiguity and conflict in the appearance information
across different views. Hence, during the early optimization
stage, we propose to set the learning rate of the cost volume
to a smaller value and gradually increase it for geometric
detail optimization. And vice versa for the learning rate of
texture, which can prevent content drift in the later stage of
optimization, please refer to supplementary for detail.

We further justify whether we should use texture priors.
We report a visual result using a pre-trained texture MLP in
Sec.3.1, rather than reinitializing the MLP network and hash

encoding in Sec.3.2. Fig.4 (g) demonstrates that introduc-
ing texture priors generally leads to a visual appearance that
tends toward non-photorealism and over-smoothing. This
observation underlines the necessity of introducing only 3D
geometric priors, which only contribute to the geometry
modeling during the lifting, avoiding compromising the ap-
pearance modeling due to texture priors.
The Effect of Mesh Fine-tuning. We convert NeuS to
DMTet to improve geometric and appearance details. We
first show the NeuS-based visual results in Fig.4 (h). Geo-
Dream produces better results with finer details, as evi-
denced in Fig.4 (j). The reason is that the advantages of the
3D assets we generate, which yield improved 3D consis-
tency, lie in the ability to enhance the accuracy of surfaces,
thereby reducing the complexity of texture optimization in
the DMTet. Fig.4 (d) presents an ablation study on SDS and
VSD loss. SDS is observed to produce over-saturated tex-
tures, as opposed to the VSD loss that we default to using.
The Effect of Rendering Resolution. Through empirical
experimentation, we deduce that collapsed geometry often
results in textural distortions, thereby increasing the diffi-
culty of optimization. Hence, we conjecture that 3D con-
sistency is one of the main bottlenecks for increasing the
rendering resolution in prior work. Instead, by integrating
3D geometric priors, we achieved better results closer to dif-
fused distributions, making the optimization becomes eas-
ier. Consequently, we successfully increase the rendering
resolution from 512 to 1024, as shown in Fig.4 (j). Addi-
tionally, Fig.4 (i) demonstrates that GeoDream still provides
competitive results at 512 × 512 resolution.

5. Conclusion

We significantly improve the rendering fidelity of images
and the details of texture meshes, while greatly alleviating
the notorious Janus problems by the awakened 3D-aware
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capability of 2D diffusion priors, which is unleashed by ge-
ometric clues provided by 3D priors in a disentangled solu-
tion. Additionally, the disentangled design offers a flexible
way to optimize 3D priors gradually. The visual and numer-
ical comparisons with the state-of-the-art methods justify
our effectiveness and show our superiority over the latest
methods in 3D generation.
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GeoDream: Disentangling 2D and Geometric Priors for High-Fidelity and
Consistent 3D Generation

Supplementary Material

6. Video
Our supplementary material also includes a video, which
shows more visualizations, inviting readers to watch for a
more intuitive visual experience.

7. Source Code
To facilitate future research, our code and 3D metric are
available at: GeoDream

8. Definition of The Janus Problem
We explain in further detail the definition of the Janus prob-
lem (3D inconsistency), which refers to a phenomenon that
the learned 3D representation, instead of presenting the 3D
desired output, shows multiple canonical views of an ob-
ject in different directions [1, 54]. For instance, when the
given prompt indicates an asymmetric geometric structure,
such as a person or an animal, the generated 3D asset has
multiple faces but lacks complete and correct back views.
In contrast, when the given prompt indicates a symmetric
structure, such as a cake or a hamburger, which does not
have strictly defined back views, issues of 3D inconsistency
typically do not arise. Therefore, when calculating the sub-
jective metric, geometrically symmetric 3D assets do not
suffer from 3D inconsistency by default.

9. More Visualization Comparisons with Base-
lines

We report our performance with more 3D generation
methods, including Fantasia3D [3], Wonder3D [27], and
Magic123 [22]. Fantasia3D employs DMTet [43] initial-
ized with a handcrafted 3D model or a predefined geometric
shape as the 3D representation, which is the same represen-
tation used in our mesh fine-tuning phase. We compare our
DMT-based results with Fantasia3D to show the gains in
rendering appearance from geometry initialization with 3D
priors. Wonder3D employs NeuS [50] as its 3D representa-
tion, which is subsequently processed through the Marching
Cube algorithm [28] to extract mesh. Magic123 adopts a
coupled approach, optimizing the 3D representation by us-
ing both 3D and 2D priors as losses. The comparisons with
Magic123 justify that the disentangling 3D and 2D priors
allows for the simultaneous harnessing of the generaliza-
tion capabilities of 2D diffusion priors and the 3D consis-
tency of 3D priors. In contrast, Magic123 requires careful
design of the balance weights between 3D and 2D loss to

avoid compromising between the two types of priors. Vi-
sual comparisons in Fig.5 reveal that we enhance the fidelity
and semantic coherence of the generated 3D assets, accom-
panied by an absence of geometric and textural distortions,
indicating excellent 3D spatial consistency.

10. Viewpoint Sampling Strategy
We propose a critical viewpoint sampling strategy to en-
hance the stability of constructing cost volumes. Cost
volume-based methods [23, 26, 57, 59] rely on the consis-
tency and accuracy of multi-views to find local correspon-
dences and infer geometry. We empirically find that current
multi-view diffusion models [20, 23, 24, 45, 56, 58] can pro-
vide relatively accurate and consistent predictions for small
relative pose, when fed with front and side views as refer-
ence views. Instead, when a back view is used as the refer-
ence view, inconsistencies tend to worsen. Our analysis in-
dicates that these multi-view models are fine-tuned from 2D
pre-trained diffusion models, which exhibit weaker perfor-
mance in predicting non-canonical view information. Ad-
ditionally, the information implied by back views is quite
ambiguous, posing challenges for predicting consistent in-
formation. Consequently, we propose a viewpoint sampling
strategy to mitigate the aforementioned problems.

Specifically, We obtain reference views driven by a user-
provided text in one of two methods: i) Obtaining a front
view predicted by Stable Diffusion [40], which is trivial as
Stable Diffusion often biases towards generating canonical
views. ii) Utilizing MVDream [45] to output desired views
based on our predefined absolute camera positions. In our
experiments, following the default settings of MVDream,
we set the absolute elevation angle at 15◦ and absolute az-
imuth angles at 0◦, 90◦, 180◦, and 270◦. We sample four
viewpoints on the sphere surface with a default radius to ob-
tain the front, left, back, and right views as reference views.

When the reference view is predicted by Stable Diffu-
sion, we require either Zero123 [24] or Zero123++ [44] to
randomly sample viewpoints within a range of a relative az-
imuth angle less than 180◦ and a relative elevation angle
less than 30◦. Subsequently, we sample an image with a
relative azimuth angle of 180◦ and a relative elevation an-
gle of 0◦ to serve as the back view, which is then added
to the source views. In the case of reference views are pre-
dicted by MVDream, we use Zero123 or Zero123++ to sam-
ple viewpoints relative to the front view, left side view, and
right side views, within a range of a relative azimuth an-
gle less than 45◦ and a relative elevation angle less than
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Cost Volume Ours Wonder3D Fantasia3D Magic123

Figure 5. More visualization comparisons with baselines. For each row from up to down, the given prompts are: (1) 3D render of a statue
of an astronaut. (2) 3D stylized game little building. (3) A brightly colored mushroom growing on a log. (4) An ice-cream cone
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Figure 6. The detailed learning rate schedule.

30◦. Subsequently, the back view predicted by MVDream
is supplemented to the source views. We show the visual-
ized comparison of the impact of reference views generated
by Stable Diffusion and MVDream on the generated 3D as-
sets, as shown in Fig.7. We report visualized results without
viewpoint sampling strategy and the results with viewpoint
sampling strategy, as shown in Fig.8. The visualized re-
sults indicate that our proposed sampling strategy can adapt
to reference views predicted by both Stable Diffusion and
MVDream, significantly enhancing the quality of the con-
structed cost volume and the consistency of the generated
3D assets.

Finally, we observe that due to the inherent lack of per-
fect consistency between source views, the constructed cost
volume is quite rough, even with the viewpoint sampling
strategy, as shown in Fig.7 and Fig.8. However, the ulti-
mately generated 3D assets tend to produce rich details and
more complete and consistent geometry. This suggests that
disentangling 3D and 2D priors is a potentially exciting di-
rection, as it provides a flexible way to further refine 3D
priors while maintaining the ability of 3D priors to unleash
2D diffusion priors.

11. Learning Rate Decay Schedule

We propose to set the learning rate of the cost volume to
a smaller value and gradually increase it for geometric de-
tail optimization, aiming to maintain geometric priori cues
in the early stage of optimization. And vice versa for the
learning rate of texture, which can prevent content drift in
the later stage of optimization. During the early optimiza-
tion stage, we adopt an initially high learning rate to fight
early overfitting [10, 21]. The detailed learning rate curves
are depicted in Fig.6.

12. Ablation on negative prompting, rendering
resolution, and corner case

Prompting. Perp-Neg [1] introduces a negative prompt
algorithm that transforms 2D Diffusion into 3D, address-
ing the Janus problem. We attempt to integrate the nega-
tive prompt algorithm into both ProlificDreamer and Geo-
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Figure 7. Ablation on the methods for obtaining reference views. We compare the generated 3D assets based on reference views predicted
by Stable Diffusion and MVDream, driven by user-provided texts. GeoDream adapt to reference views from various sources. For each row
from up to down, the given prompts are: (1) A majestic giraffe with a long neck. (2) Viking axe, fantasy, weapon, blender, 8k, HD.

Dream, as shown in Fig.9 (a) and Fig.9 (b). The result
shown in Fig.9 (a) demonstrates that the negative prompt al-
gorithm still fails to mitigate the Janus problem stably. Fig.9
(b) illustrates that GeoDream is able to yield consistent 3D
assets both with and without the negative prompt algorithm.
However, since we did not observe a significant improve-
ment in the results, we opt not to use the negative prompt al-
gorithm as a default in our experiments. Instead, we employ
view-dependent prompting as in previous works [35, 53].
Rendering Resolution. We attempt to increase the ren-
dering resolution to 1024 in ProlificDreamer, which typi-
cally struggles with over-saturation issues, as demonstrated
in Fig.9 (c). Our analysis suggests that the absence of 3D
priors often leads to collapsed geometry, resulting in textu-
ral distortions and thereby increasing the complexity of the
optimization.
Corner Case. We further explore the robustness of Geo-
Dream when faced with failures of multi-view diffusion in
predicting multiple views. For instance, when the given
prompt is “A DSLR photo of a squirrel playing guitar”,
multi-view diffusion struggles to accurately predict the cor-
rect spatial relationship between the guitar and the squirrel,

due to the sparsity of 3D training data. However, GeoDream
excels in preserving the generalizability and creativity of
2D diffusion priors, enabling more effective compatibility
with imperfect multi-view predictions, and thus generating
semantically correct 3D assets, as shown in Fig.9 (e).

13. Training Stability and Diversity

Stability. Prior text-to-3D studies are notoriously brittle.
The same hyperparameter settings often lead to vastly dif-
ferent results in terms of complete failure or success, de-
pending on the random seed, making them hard to con-
trol. To assess the training stability of GeoDream, we con-
duct several experiments on the same prompt, as shown
in Fig.10. GeoDream exhibits exceptional training stabil-
ity. The reason lies in the 3D priors we introduced, which
significantly reduce the randomness caused by the random
seeds.
Diversity Additionally, we can generate diverse 3D models
by controlling and leveraging the diversity capabilities of
Stable Diffusion or MVDream to predict various reference
views, as mentioned in Sec.10 and Fig.7. In summary, Geo-
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Figure 8. Ablation on the viewpoint sampling strategy. We demonstrate that using our proposed viewpoint sampling strategy contributes
to the more robust generation of a consistent cost volume, significantly avoiding the outcomes of geometric collapse. For each row from
up to down, the given prompts are: (1) A dinosaur toy. (2) A corgi.

(c) ProlificDreamer
1024 Resolution

(a) ProlificDreamer
+ Perp-Neg

(b) Ours
+ Perp-Neg

(d) Image predicted
by multi-view diffusion (e) Ours

Figure 9. Ablation on negative prompting, rendering resolution, and corner case. The given prompts are: (a) and (b) A 3D printed white
bust of a man with curly hair. (c) An astronaut riding a horse. (d) and (e) A DSLR photo of a squirrel playing guitar.

Dream provides a balanced solution between diversity and
stability.

14. Licenses

We provide the URL, citations, and licenses of the open-
sourced assets we used in this work, as shown in Tab.3.

15. Algorithm

We provide a summarized algorithm of priors refinement in
Algorithm 1.

16. Training Details

We construct a cost volume with 150× 150× 150 voxels in
2 minutes on an NVIDIA-V100-32GB GPU. During the pri-
ors refinement stage, we employ a network modified based
on ProlificDreamer [53]. We replace the learnable hash en-
coding used in ProlificDreamer by cost volume. We choose
a single-layer MLP to decode the color from texture hash
encoding as Instant-NGP [33]. Following ProlificDreamer,
we set the particle to 1 and utilize v-prediction [42] to train
the LoRA [14] based on Stable Diffusion v2.1 model for
VSD loss. Notably, even when the rendering resolution in-
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Figure 10. Ablation on training stability. We conduct several experiments on the same prompt to verify the training stability of GeoDream.
The given prompt is: An astronaut riding a horse.

creased from 512 to 1024, the training time does not show
a significant difference compared to ProlificDreamer. The
reason is that 3D assets generated by GeoDream, which ex-
hibit fewer artifacts and thus enhanced rendering efficiency.
Specifically, training the NeuS representation [50] with the
batch size set to 1 typically requires approximately 3 hours
on a single NVIDIA-V100-32GB GPU. Mesh finetuning
with a batch size of 2 usually requires around 8 hours on
a single NVIDIA-V100-32GB GPU. Utilizing larger batch
sizes and parallel multi-GPUs training could potentially re-
duce training times and we leave this exploration in future
work.

17. Ablation on Source Views Predicted by Dif-
ferent Multi-View Diffusion Models

To demonstrate that GeoDream is trivially adaptable to var-
ious multi-view diffusion models, we conduct the visual
comparison with our generated 3D assets based on either
Zero123 or Zero123++. Specifically, for a fair comparison,
the reference views are generated by MVDream driven by
user-provided texts. Then, employing the viewpoint sam-
pling strategy proposed in Sec.10, we obtain source views
predicted by Zero123 or Zero123++. Fig.11 and Fig.12
show the comparison of our generated 3D assets based on
source views predicted by Zero123 and Zero123++. Fig.11
and Fig.12 illustrate that GeoDream can adapt to differ-
ent multi-view diffusion models, producing 3D assets with
plausible geometry and intricate rendering details in visual
appearance. The adaptability and seamless integration of
GeoDream with various multi-view diffusion models high-
light the evolutionary potential of GeoDream, alongside the
future advancements of multi-view diffusion models.

5



Table 3. URL, citations and licenses of the open-sourced assets we used in this work.

URL Citation License

https://github.com/threestudio-project/threestudio [9] Apache License 2.0
https://github.com/bytedance/MVDream [45] Apache License 2.0
https://github.com/One-2-3-45/One-2-3-45 [23] Apache License 2.0
https://github.com/cvlab-columbia/zero123 [24] MIT License
https://github.com/SUDO-AI-3D/zero123plus [44] Apache License 2.0
https://github.com/huggingface/diffusers [40] Apache License 2.0
https://github.com/allenai/objaverse-xl [5, 6] Apache License 2.0

Algorithm 1: Priors Refinement

Input: A condition c, rotation and translation matrix {(Ri, Ti)
N−1
i=0 }, voxel location h, the variance operation

Var{·}, the projection procedure P (·, ·), multi-view diffusion fmv , a 2D feature network f2D, a 3D feature
network f3D, a geometric decoder fg , texture decoder f ′

t , position encoding E(·), 2D diffusion model
ϵpretrain. Learning rate η1, η2, η3,η4 and η5 for cost volume V , hash texture encoding hΩ, texture decoder f ′

t ,
a LoRA diffusion model ϵl and DMTet parameters, respectively.

1 Initialize 2D feature network f2D, 3D feature network f3D, and geometry MLP decoder fg with pretrained
parameters obtained from 3D priors training stage. Initialize texture hash encoding and texture decoder f ′

t

parameterized by (θ2, θ3). Initialize a LoRA diffusion model parameterized by l.
2 for i=0 to N-1 do
3 F p

i ← f2D(fmv(c,Ri, Ti))
4 end
5 Vp = f3D( Var{P (F p

i , h)}
N−1
i=0 )

6 Cost volume Vp parameterized by θ1.
7 while not converged do
8 Ramdomly sample a camera pose o. Sample M query points xj along the view ray based on camera pose o.
9 for j=0 to M-1 do

10 sj ← fg(E(xj), VP (xj))
11 cj ← f ′

t(hΩ(xj), xj)

12 end
13 x̂← R({sj}M−1

j=0 , {cj}M−1
j=0 )

14 θ1 ← θ1 − η1Et,ϵ,o[w(t)(ϵpretrain(x̂t, t, c)− ϵl(x̂t, t, c, o))
∂x̂
∂θ1

]

15 θ2 ← θ2 − η2Et,ϵ,o[w(t)(ϵpretrain(x̂t, t, c)− ϵl(x̂t, t, c, o))
∂x̂
∂θ2

]

16 θ3 ← θ3 − η3Et,ϵ,o[w(t)(ϵpretrain(x̂t, t, c)− ϵl(x̂t, t, c, o))
∂x̂
∂θ3

]

17 l← l − η4∇lEt,ϵ||ϵl(x̂t, t, c, o))− ϵ||22
18 end
19 Mesh fine-tuning, we use DMTet to extract textured mesh from optimized 3D representation parameterized by

(θ1, θ2, θ3) and geometry MLP decoder fg . The extracted DMTet parameterized by θ4. Initialize a LoRA diffusion
model parameters l′.

20 while not converged do
21 Ramdomly sample a camera pose o. Render 2D image x̂ at pose o.
22 θ5 ← θ5 − η5Et,ϵ,o[w(t)(ϵpretrain(x̂t, t, c)− ϵl′(x̂t, t, c, o))

∂x̂
∂θ5

]

23 l′ ← l′ − η4∇l′Et,ϵ||ϵl′(x̂t, t, c, o))− ϵ||22
24 end
25 return
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Figure 11. Ablation on source views predicted by different multi-view diffusion models. We compare our generated 3D assets based on
source views predicted by Zero123 and Zero123++. For a fair comparison, the reference views are generated by MVDream driven by
user-provided texts. GeoDream adapt to source views predicted by various multi-view diffusion models. For each row from up to down,
the given prompts are: (1) A brightly colored mushroom growing on a log. (2) Mech robot with large weapons on top with hexagonal bases.
(3) A small kitten.
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Figure 12. Ablation on source views predicted by different multi-view diffusion models. We compare our generated 3D assets based on
source views predicted by Zero123 and Zero123++. For a fair comparison, the reference views are generated by MVDream driven by
user-provided texts. GeoDream adapt to source views predicted by various multi-view diffusion models. For each row from up to down,
the given prompts are: (1) 3D render of a statue of an astronaut. (2) A high quality photo of a dragon. (3) A cute rabbit in a stunning,
detailed Chinese coat.
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